Signaling Local Non-credibility in an Automatic Segmentation Pipeline
نویسندگان
چکیده
The advancing technology for automatic segmentation of medical images should be accompanied by techniques to inform the user of the local credibility of results. To the extent that this technology produces clinically acceptable segmentations for a significant fraction of cases, there is a risk that the clinician will assume every result is acceptable. In the less frequent case where segmentation fails, we are concerned that unless the user is alerted by the computer, she would still put the result to clinical use. By alerting the user to the location of a likely segmentation failure, we allow her to apply limited validation and editing resources where they are most needed. We propose an automated method to signal suspected non-credible regions of the segmentation, triggered by statistical outliers of the local image match function. We apply this test to m-rep segmentations of the bladder and prostate in CT images using a local image match computed by PCA on regional intensity quantile functions. We validate these results by correlating the non-credible regions with regions that have surface distance greater than 5.5mm to a reference segmentation for the bladder. A 6mm surface distance was used to validate the prostate results. Varying the outlier threshold level produced a receiver operating characteristic with area under the curve of 0.89 for the bladder and 0.92 for the prostate. Based on this preliminary result, our method has been able to predict local segmentation failures and shows potential for validation in an automatic segmentation pipeline.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملExperimental values for adjusting an automatic control valve in gas pipeline transportation
When a natural gas pipeline ruptures, the adjacent automatic line control valves (ALCVs) should close quickly to prevent leakage or explosion. The differential pressure set point (DPS) at each valve location is the main criteria for value setting in ALCV action. If the DPS is not properly adjusted, the ALCV may mistakenly close or it may not take any action at proper time. This study focused on...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملInfluence of Pipeline Operating Pressure on Value Setting of Automatic Control Valves at Different Pressure Drop Rates
When a natural gas pipeline ruptures, the adjacent upstream and downstream automatic control valves (ACV) should close quickly to prevent leakage or explosion. The differential pressure set point (DPS) at each valve location is the main criteria for value setting in ACV actions. If the DPS is not properly adjusted, the ACV may mistakenly close or it may not take any actions at a proper ti...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007